序列分析涉及分析历史需求数据以识
1.时间序列分析 时间序列分析涉及分析历史需求数据以识别模式和趋势。常见技术包括移动平均线、指数平滑和季节性分解。 2. 因果法 因果方法建立了需求与各种影响因素(例如经济指标、消费者行为和竞争对手活动)之间的关系。回归分析和计量经济模型是常用的因果方法。 3、判断方法 判断方法包括将专家意见和市场洞察纳入预测过程。这些定性方法可能包括德尔菲法、高管意见和客户调查。 4 模拟方法 模拟方法使用计算机模型来模拟现实世界的条件并生成需求场景。蒙特卡罗模拟和系统动力学是模拟方法的例子。 5. 机器学习方法 机器学习算法可以分析大型数据集并识别复杂的模式。人工神经网络、决策树和随机森林是需求预测常用的机器学习方法。 6.移动平均线 移动平均线计算指定时期内的平均需求,消除短期波动。 通常使用简单移动平均线 (SMA)和指数移动平均线(EMA)。 7. 指数平滑 […]